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Abstract

In this paper, we propose a model for futures returns that has the potential to
provide both individual investors and Örms who have positions in Önancial and energy
commodity futures a valid tail risk management tool. In doing so, we also aim to
explore the commonalities between these markets and the degree of Önancialization of
energy commodities. While empirical studies in energy markets embed either leverage
or jumps in the futures return dynamics, we show that the introduction of both features
improves the ability to forecast volatility as an indicator for risk for both the S&P500
and natural gas futures markets. Unlike most of the existing studies in energy derivative
markets based on daily data, our empirical analysis makes use of high-frequency (tick-
by-tick) data from the futures markets, aggregated to 10-minute intervals during the
trading day. The intraday variation is then utilized to generate daily time series of
prices, returns and realized variance. Our analysis shows that overall, the introduction
of both leverage and jumps in the SVJL model provides the best forecast for risk in both
a VaR and a CVaR sense for investors who have any position in natural gas futures
regardless of their degree of risk aversion. In the S&P500 market, the SVJL model
provides the most precise forecast of risk in a CVaR sense for risk-averse investors with
any position in futures, regardless of their degree of risk aversion.

Focusing on a Örmís internal risk management, the introduction of both jumps and
leverage in the SVJL model would beneÖt speculative Örms who are short natural gas
futures aiming at minimizing tail risk in a VaR sense, as well as speculative Örms who
are long S&P500 futures and use either VaR or CVaR as Önancial risk management
criteria while wanting to minimize the opportunity cost of capital.
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1 Introduction

In this paper, we propose a model for futures returns that has the potential to provide

both individual investors and Örms who have positions in Önancial and energy commodity

futures a valid tail risk management tool. In doing so, we also aim to explore the com-



2 Literature review

Traditionally, the term leverage e¤ect indicates the negative correlation between asset re-

turns and changes in their volatility (see Ait-Sahalia et al.(2013) for an extensive literature

review). The interpretation of this e¤ect is intuitive if events that have a negative impact

on Önancial markets would eventually cause an increase in their volatility.

As mentioned by Kristoufek (2014), the original interpretation of the leverage e¤ect

was based on Black (1976) who related decreasing expected earnings of the company to a

decrease of the market value of the company which drives up the leverage ratio between

debt and equity. The negative relationship between returns and volatility was therefore

labelled the ëleverage e¤ectí. As market prices are driven by many more factors besides

simply expected returns, more recent literature has moved beyond this naïve interpretation.

The leverage e¤ect is simply seen as a negative relationship between returns and volatility.

Negative news usually increases volatility while driving prices down, resulting in negative

returns. This implies that negative shocks to the WTI and S&P500 futures markets are fol-

lowed by greater volatilities than upward movements of the same magnitude (see a related

study on Brent futures by Cheong (2009)). The leverage e¤ect thus is a natural connection

of the two characteristics, returns and volatility, of the traded assets. In the recent liter-

ature, the negative correlation between returns and volatility is weak but persistent. The

causality goes from returns to volatility and not vice versa (Kristoufek 2014, Bollerslev et



more e¢ ciently than GARCH models. At the same time, they Önd a signiÖcant negative

leverage e¤ect in crude oil spot markets. Kristoufek (2014) focuses on the leverage e¤ect

in commodity futures markets and provides an extensive literature review in this area.

As a measure of market risk, VaR has been widely developed since its introduction

in RiskMetrics by JP Morgan in 1994. It is deÖned as the maximum potential loss of an

underlying asset at a speciÖc probability level over a certain horizon. Despite its popularity,

an obvious and distinctive limitation of the VaR approach is that it only speciÖes the

maximum one can lose at a given risk level, but provides no indication for how much more

than VaR one can lose if extreme tail events happen. A good alternative is conditional

Value-at-Risk (CVaR), which is a coherent risk measure and retains the beneÖts of VaR in

terms of the capability to deÖne quantiles of the loss distribution.

Fan et al. (2008) estimate VaR for crude oil prices using a GED-GARCH approach

with daily WTI and Brent prices from 1987 to 2006. They Önd that this type of model

speciÖcation does as well as the standard normal distribution at a 95% conÖdence level.



between inventories and prices: the smaller the inventories available for that speciÖc natural

gas, the higher its price volatility (see also Deaton and Leroque, 1992).

Schwartz (1997), Schwartz and Smith (2000), and Casassus and Collin-Dufresne (2005)

propose multi-factor models for energy prices where returns are only a¤ected by Gaussian

shocks, but they constrain volatility to be constant. Pindyck (2004) examines the volatility

of energy spot and futures prices, estimating the standard deviation of their Örst di¤erences.

Mason and Wilmot (2014) investigate the potential presence of jumps in two key daily

natural gas prices: the spot price at the Henry Hub in the US, and the spot price for

natural gas at the National Balancing Point in the UK. They Önd compelling empirical

evidence for the importance of jumps in both markets, though jumps appear to be more

important in the UK. They Öt the data using a GARCH(1,1) jump di¤usion process where

volatility is time-varying and show that the best Öt for natural gas futures is a model with

both stochastic volatility and leverage.

We contribute to the current debate by testing for the existence of the leverage e¤ect

and the presence of jumps in the context of a near-continuous observation of the processes

with the ability to study their volatility in great detail by using high frequency futures

returns in the S&P500, natural gas and crude oil markets and by studying the impact of

the leverage e¤ect on measures of risk such as VaR and CVaR.

In terms of tail risk management, in the crude oil spot market, it has been shown

(see Chen, Zerilli and Baum (2019)) that the introduction of the leverage e¤ect in the

traditional stochastic volatility (SV) model with normally distributed errors is capable of



markets considered. Compared to Chen, Zerilli and Baum (2018) which presented evidence

for leverage in the crude oil spot market using daily data by estimating the SV models using

MCMC techniques, this new paper analyses evidence for both jumps and leverage in the

S&P500 and natural gas futures markets and evidence for leverage in the WTI crude oil

futures market using a GMM approach based on the moment conditions of the Integrated

Volatility derived from high frequency data. Our paper also examines the impact of jumps

and leverage on tail risk management for both individual investors and Örms who are

focused on managing risk in a VaR/CVaR sense while minimizing their cost of capital.

3 Data

The raw data used in this study are 10-minute aggregations1 of natural gas, crude oil

and S&P500 futures contract transactions-level data provided by TickData, Inc. Industry

analysts have noted that to avoid market disruptions, major participants in the futures

market roll over their positions from the near contract to the next-near contract over several

days before the near contractís expiration date. A continuous price series over contracts,

which expire monthly, is created by hypothetically rolling over a position from the near

contract to the next-near contract three days prior to expiration of the near contract.

The time series of daily futures returns and the corresponding Realized Variance for

these markets are given in Figs. 1 to 6.

S&P500 futures are traded on the CME Groupís NYMEX exchange. According to the

exchange, S&P 500 futures and options o¤er a capital-e¢ cient means to manage exposure

to the leading large-cap companies of the U.S. stock market. Based on the underlying

Standard & Poorís 500 stock index, which is made up of 500 individual stocks representing

the market capitalizations of large companies, the S&P 500 Index is a leading indicator of

large-cap U.S. equities. S&P500 futures trade in units of $250 x S&P 500 Index.

1 Jiang and Oomen (2007) apply the GMM method to estimate a SVJ model Önd similar results when
using 10-minute and 5-minute aggregated data. Other research performed with these tick-level data aggre-
gations for crude oil and natural gas have concluded that the choice of 10-minute, 15-minute and 20-minute
intervals has minor e¤ects on their Öndings: e.g., Wolfe and Rosenman (2014).
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Henry Hub Natural Gas (NG) futures, traded on the CME Groupís NYMEX exchange,

allow market participants signiÖcant hedging activity to manage risk in the highly volatile

natural gas price, which is driven by weather-related demand. According to the exchange,

the NG contract is the third-largest physical commodity futures contract in the world by

volume.

The futures price is widely used as a national benchmark price for natural gas, which

continues to grow as a global and U.S. energy source. Natural gas futures trade in units

of 10,000 million British thermal units (mmBtu), which is approximately 10,000,000 cubic

feet of gas. Futures prices are quoted in US dollars and cents, with a minimum price

increment of $0.001 per mmBtu. At present, 118 consecutive monthsícontracts may be

traded.

Light, sweet crude oil (West Texas Intermediate) began futures trading on the New

York Mercantile Exchange (NYMEX) in 1983 and is the most heavily traded commodity

future. Crude oil futures trade in units of 1,000 U.S. barrels (42,000 gallons), with contracts

dated for 30 consecutive months plus long-dated futures initially listed 36, 48, 60, 72, and

84 months prior to delivery. Additionally, trading can be executed at an average di¤erential

to the previous dayís settlement prices for periods of two to 30 consecutive months in a

single transaction. Crude Oil Futures (CL) are quoted in dollars and cents per barrel.

3.1 Descriptive statistics

In this section we provide a detailed empirical characterization of futures returns and their

variance. More speciÖcally, we are interested in considering whether the data are normally

distributed, behave in a white noise fashion and have a unit root.

Table 1 provides descriptive statistics for the futures contract returns and their realized

variance. Both series exhibit excess kurtosis, while the realized variance series have large

skewness coe¢ cients. The KolmogorovñSmirnov test (Table 2) for normality rejects its null

for both series, while the ShapiroñFrancia test for normality concurs with those judgements.

The BoxñPierce portmanteau (or Q) test for white noise rejects its null for all the series

6



with exception of the natural gas futures returns. Using the Augmented DickeyñFuller and

Phillips-Perron tests, the null hypothesis of a unit root is rejected for all the futures daily

returns and corresponding realized variances.
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4 Estimation method

Following Bollerslev and Zhou (2002), who use continuously observed futures prices, we

build a conditional moment estimator for stochastic volatility models based on matching the

sample moments of Realized Variance with population moments of the Integrated Variance

(see Appendix I for details). In this paper, realized variance is computed as the sum of

high-frequency (10-minute interval) intraday squared returns. The returns on futures at

time t over the interval [t� k; t] can be decomposed as

r (t; k) = lnFt �



dpt = d ln(Ft)

=
p
VtdW1t + xdPoisson (�t) (3)

dVt = � (� � Vt) dt+ �
p
VtdW2t (4)

E (dW1tdW2t) = �dt (5)

x � N
�
0; �2

x

�
In the original Heston model, there are two Wiener processes, dW1t and dW2t, driving

the evolution of returns and volatility and three parameters �; �





As there are twelve moment conditions (for details see Appendix III) and Öve estimated



We Önd that stochastic volatility models with leverage are e¤ective in Ötting the volatil-

ity of futures returns for all the three markets. More speciÖcally, we Önd signiÖcant evidence

of a leverage e¤ect for S&P500 and crude oil markets: a negative shock to returns increases

volatility in these markets. In contrast, we Önd evidence of inverse leverage e¤ect for the

natural gas market (in line with Kristoufek (2014)).

4.4 Stochastic Volatility model (SV)

This is a special case of the general model where there are no jumps and no leverage

(� = 0; �x = 0 and � = 0).

In this case, these are the two main moment conditions, augmented using four lagged

counterparts (see Appendices I and III for details):

�
e1

e2

�
As there are six moment conditions and three estimated parameters, there are three

overidentifying restrictions that may be used to evaluate the model for each market. The

Hansenís J statistic indicates that the overidentifying restrictions are valid. As shown in

Tables 3 and 4 the three estimated parameters of the model are very precisely estimated

(except � for the WTI dataset) and take on sensible values from an analytical perspective.3

3 In order to implement this estimation, we deÖne the moment conditions and build speciÖc t-tests on
the moment conditions.
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Table 3: GMM estimates for the SV, SVJ, SVL, SVJL models for the S&P500
futures: 09/2001ñ06/2016

SV SVJ SVL SVJL

�
1:507∗∗∗

(5:87)
0:0869∗∗∗

(4:58)
0:0424∗∗∗

(2:92)
0:227∗∗∗

(29:99)

�
0:00398∗∗∗

(8:41)
0:00994∗∗∗

(12:56)
0:00649∗∗∗

(5:55)
0:00376∗∗∗

(15:69)

�
0:283∗∗∗

(6:55)
0:338∗∗∗

(19:62)
0:249∗∗∗

(17:96)
0:12015172∗∗∗

(�54:75)

�
0:979
(0:38)

0:156923006∗∗∗

(�10:09)

�x
0:0159
(0:77)

0:038120618∗∗∗

(�30:60)

�
�0:379∗∗∗

(�11:29)
�0:490∗∗∗

(�29:11)

N 3708

t statistics in parentheses
∗p < 0:10;∗∗ p < 0:05;∗∗∗ p < 0:01

Table 4: GMM estimates for the SV, SVJ, SVL, SVJL models for Natural Gas
futures: 09/2001ñ06/2016

SV SVJ SVL SVJL

�
0:923∗∗

(2:19)
0:772∗∗∗

(4:11)
0:760∗∗∗

(3:45)
0:0556∗

(1:75)

�
0:0483∗∗∗

(4:36)
0:0568∗∗∗

(6:15)
0:0460∗∗∗

(5:60)
0:0545∗∗∗

(4:97)

�
1:139∗∗

(2:33)
1:041∗∗∗

(6:23)
0:925∗∗∗

(3:49)
0:24293∗∗∗

(�3:82)

�
0:0101∗∗∗

(4:03)
0:04345∗∗∗

(�18:52)

�x
0:932∗∗∗

(32:63)
0:97814
(�0:53)

�
0:201∗∗∗

(4:57)
0:0495∗∗

(2:14)

N 3708

t statistics in parentheses
∗p < 0:10;∗∗ p < 0:05;∗∗∗ p < 0:01
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Table 5: GMM estimates for the SV, SVJ, SVL models for WTI futures:
09/2001ñ06/2016

SV SVJ SVL

�
0:117
(1:43)

0:0596∗

(1:77)
0:0963∗

(1:71)

�
0:0247∗∗∗

(5:75)
0:0224∗∗∗

(3:45)
0:0242∗∗∗

(6:43)

�
0:176∗∗

(2:04)
0:131∗∗∗

(2:60)
0:162∗∗

(2:50)

�
0:0190∗∗

(2:44)

�x
0:439∗∗∗

(39:24)

�
�0:276∗∗∗

(�3:64)

N 3708

t statistics in parentheses
∗p < 0:10;∗∗ p < 0:05;∗∗∗ p < 0:01

5 Robustness check for subsamples

In this section, we perform a robustness check by splitting the entire sample in two subsam-

ples: before and after the Lehman Brothers bankruptcy in mid-September 2008. Within

each subsample, the choice of the most appropriate model di¤ers for the energy futures se-

ries, perhaps reáecting evolutionary forces in energy markets such as the widespread use of

fracking and the resulting increases in natural gas supply. Given the underlying structural

changes in the US energy sector, it is not surprising that a model Öt over the entire period

may not be the best choice over a restricted subsample.

As shown in Table 6, the SVJL model provides the best Öt for the S&P500 futures

market on the overall sample and on the two subsamples. For the natural gas futures

market, the SVJL model provides the best Öt for the overall sample and for the pre-crisis

subsample, while the SVL model is the most appropriate to Öt the post-crisis subsample.

15



For the WTI crude oil futures market, the SVL model provides the best Öt for the

overall sample and for the pre-crisis subsample while the SVJL model performs best for

the post-crisis subsample.
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Table 6: GMM estimates for S&P500, Natural Gas and WTI futures before and
after September 15, 2008 (Lehman Brothers bankruptcy)

S&P500 NG WTI
Before September 15, 2008
N = 1699

SVJL SVJL SVL

�
0:137∗∗∗

(13:27)
0:0871∗∗∗

(5:55)
0:276∗∗∗

(3:87)

�
0:00331∗∗∗

(16:47)
0:0836∗∗∗

(11:69)
0:0328∗∗∗

(8:33)

�
0:0577∗∗∗

(�57:58)
0:5455∗∗∗

(�12:32)
0:343∗∗∗

(6:36)

�
0:1325∗∗∗

(�7:37)
0:0966∗∗∗

(�26:15)

�x
0:0364∗∗∗

(�24:70)
0:4921∗∗∗

(�48:64)

�
�0:440∗∗∗

(�18:40)
0:0137∗∗

(2:20)
�0:262∗∗∗

(�6:66)

After September 15, 2008
N = 1990

SVJL SVL SVJL

�
0:188∗∗∗

(13:22)
0:0434
(1:41)66)



6 Out-of-sample performance



errors coming from all the models. The BoxñPierce portmanteau (or Q) test for white

noise rejects its null for all the series of forecast errors with the exception of the residuals

for the S&P500 market.

Table 7: Out-of-sample performance of SV, SVL and SVJL models: July-December 2016
RMSE and MAE for the returns process.

SV SVJ SVL SVJL
RMSE
S&P500 0:08014 0:19278 0:07757 0:1104

WTI 0:26398 0:28523 0:26231

NG 0:34547 0:3652 0:33651 0:378

MAE
S&P500 0:06134 0:12978 0:05884 0:07281

WTI 0:20573 0:22121 0:20444

NG 0:26411 0:28076 0:25676 0:27043

Table 8: Out-of-sample performance of SV, SVL and SVJL models: July-December 2016
RMSE and MAE for the variance process.

SV SVJ SVL SVJL
RMSE
S&P500 0:00447 0:013848 0:004074 0:003308

WTI 0:021026 0:019163 0:020501

NG 0:066412 0:072497 0:057729 0:03341

MAE
S&P500 0:003215 0:005822 0:002886 0:002195

WTI 0:015708 0:014377 0:015325

NG 0:041425 0:046088 0:037161 0:023585

6.2 DieboldñMariano test

This test calculates a measure of predictive accuracy proposed by Diebold and Mariano

(1995). We ran the test for each of 350 simulations per model and present summary
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Table 9: S&P500, natural gas and WTI futures: Engleís Lagrange multiplier test for autore-
gressive conditional heteroskedasticity for standardized residuals and squared standardized
residuals for SV, SVJ, SVL and SVJL models.

1 lag p-val 5 lags p-val 10 lags p-val 30 lags p-val
SV SP res 4:80 0:03 5:20 0:39 6:07 0:81 17:64 0:96
SV SP res squ 0:66 0:42 0:97 0:97 1:31 1:00 12:81 1:00
SV SP J res 0:09 0:76 21:50 0:00 31:89 0:00 5:59 1:00
SV SP J res squ 0:05 0:83 27:44 0:00 36:50 0:00 0:67 1:00
SV SP L res 0:38 0:54 6:07 0:30 7:38 0:69 24:71 0:74
SV SP L res squ 0:00 0:96 1:65 0:90 2:21 0:99 9:59 1:00
SV SP JL res 0:17 0:68 5:11 0:40 7:67 0:66 23:01 0:81
SV SP JL res squ 0:27 0:61 4:30 0:51 5:96 0:82 22:44 0:84
SV NG res 0:01 0:93 0:04 1:00 0:10 1:00 20:19 0:91
SV NG res squ 0:01 0:93 0:04 1:00 0:10 1:00 18:55 0:95
SV NG J res 0:01 0:94 0:04 1:00 0:10 1:00 22:97 0:82
SV NG J res squ 0:01 0:93 0:04 1:00 0:10 1:00 19:40 0:93
SV NG L res 0:05 0:83 0:06 1:00 0:25 1:00 19:37 0:93
SV NG L res squ 0:01 0:92 0:05 1:00 0:11 1:00 13:84 0:99
SV NG JL res 6:68 0:01 7:15 0:21 11:43 0:32 22:10 0:85
SV NG JL res squ 4:05 0:04 4:37 0:50 4:29 0:93 4:76 1:00
SV CL res 0:00 1:00 1:91 0:86 4:71 0:91 17:86 0:96
SV CL res squ 0:15 0:69 0:76 0:98 1:52 1:00 15:42 0:99
SV CL J res 0:00 0:98 2:05 0:84 4:67 0:91 17:12 0:97
SV CL J res squ 0:10 0:75 0:65 0:99 1:30 1:00 10:38 1:00
SV CL L res 0:00 1:00 2:06 0:84 4:75 0:91 17:22 0:97
SV CL L res squ 0:11 0:74 0:75 0:98 1:60 1:00 10:23 1:00

20



Table 10: S&P500, natural gas and WTI futures: Test statistics and p-values for standard-
ized residuals and squared standardized residuals for SV, SVJ, SVL and SVJL models

KSmirnov p-val SFrancia p-val Qtest p-val
SV SP res 0:094 0:231 3:253 0:001 65:850 0:006
SV SP res squ 0:303 0:000 7:853 0:000 37:832 0:568
SV SP J res 0:296 0:000 8:172 0:000 40:898 0:431
SV SP J res squ 0:452 0:000 9:018 0:000 34:394 0:720
SV SP L res 0:068 0:626 0:928 0:177 85:452 0:000
SV SP L res squ 0:259 0:000 7:420 0:000 43:723 0:316
SV SP JL res 0:072 0:554 0:799 0:212 87:346 0:000
SV SP JL res squ 0:249 0:000 7:090 0:000 39:267 0:503
SV NG res 0:311 0:000 8:799 0:000 6:095 1:000
SV NG res squ 0:483 0:000 9:252 0:000 0:421 1:000
SV NG J res 0:314 0:000 8:809 0:000 5:425 1:000
SV NG J res squ 0:494 0:000 9:254 0:000 0:397 1:000
SV NG L res 0:151 0:007 7:048 0:000 20:472 0:996
SV NG L res squ 0:431 0:000 9:126 0:000 1:917 1:000
SV NG JL res 0:052 0:888 2:377 0:009 34:724 0:706
SV NG JL res squ 0:303 0:000 8:145 0:000 21:069 0:994
SV CL res 0:046 0:958 1:521 0:064 42:030 0:383
SV CL res squ 0:276 0:000 7:644 0:000 34:788 0:704
SV CL J res 0.046 0.957 1.547 0.061 42.7 0F61 10W10.9091 Tf 3.03 0 Td [(917)-1346(1)]TJ/F61 10.9091 Tf 36.501 0 Td [(:)]TJ/F15 3(CL)-334(res)-333(squ)]TJ/F15 10.9091 Tf 110.958 0 Td [(0)]TJ/F61 10.9091 Tf 5.454 0 Td [(:)]TJ/F15 10.9091 Tf 3.03 0 Td [(276)-2152(0)]TJ/9091 Tf 3.03 0 Td [(000)-1096(21)]TJ/F61 10.9091 Tf 39.228 0 Td [(:)]TJ/F15 10.9091 Tf 3.03 0 Td [36F.4JL res squ0276 0000 21



statistics from that set of test results. Given an actual series and two competing predictions,

one can apply a loss criterion (such as mean squared error or mean absolute error) and

then calculate a number of measures of predictive accuracy that allow the null hypothesis

of equal accuracy to be tested. Table 11 reports the results for the futures returns and

corresponding variance for all the markets. The test rejects the null that the two models are

equally capable in terms of their MSEs at the 95% level of conÖdence. For the simulations

in which the test rejects equal forecast accuracy, we can compare the mean MSE for the

two models.

While the results are not conclusive for the futures returns series (see Table 11), in the

case of the corresponding variance, we can observe an high number of rejections and for

the S&P500 and WTI realized variance of the futures returns the SVL model compared to

the SV model has the smaller MSE for all the markets. In summary, for the S&P500 and

WTI realized variance of the futures returns, the SVL model has the smaller mean MSE

for those simulations in which the DieboldñMariano test rejects its null hypothesis of equal

forecast accuracy. According to Table 12, the SVL model, compared to the SVJ model,

shows an higher forecasting accuracy for the S&P500 futures returns and for the natural

gas futures variance. Considering Table 13, for the S&P500 and NG realized variance of

the futures returns, the SVJL model has the smaller mean MSE compared to the SVL

model for those simulations in which the DieboldñMariano test rejects its null hypothesis

of equal forecast accuracy.
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Table 11: DieboldñMariano test for futures returns and their variance SV vs SVL: com-
parison of forecast accuracy over 350 out-of-sample predictions

futures returns variance of futures returns
SP500 WTI NG SP500 WTI NG

SV beats SVL 0 0 0 0 0 0

SVL beats SV 39 31 70 196 223 166
Test inconclusive 311 319 280 154 127 184
Total 350 350 350 350 350 350

Table 12: DieboldñMariano test for futures returns and their variance SVJ vs SVL: com-
parison of forecast accuracy over 350 out-of-sample predictions

futures returns variance of futures returns
SP500 WTI NG SP500 WTI NG

SVJ beats SVL 0 0 0 0 0 0

SVL beats SVJ 336 45 60 165 69 304
Test inconclusive 14 305 290 185 281 46
Total 350 350 350 350 350 350
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Table 13: DieboldñMariano test for futures returns and their variance SVL vs SVJL:
comparison of forecast accuracy over 350 out-of-sample predictions

futures returns variance of futures returns
SP500 NG SP500 NG

SVL beats SVJL 0 0 0 0

SVJL beats SVL 71 8 258 199
Test inconclusive 279 342 92 151
Total 350 350 350 350

7 Forecasting VaR and CVaR

In this section we want to explore whether the forecasts provided by the two models are

able to provide a Önancial investor with a valid tool for hedging risk. Therefore, we derive

VaR and CVaR using the simulated volatility series when Öxing the parameter values at

the GMM estimates and we then backtest them against the actual market futures returns.

We perform this analysis for the SV, SVJ, SVL and SVJL models only are they are the

best contenders overall.

As a measure of market risk, VaR has been widely developed since its introduction

in RiskMetrics by JP Morgan (1994). It is deÖned as the maximum potential loss of an

underlying asset at a speciÖc probability level over a certain horizon. Despite its popularity,

an obvious and distinctive limitation of the VaR approach is that it only speciÖes the

maximum one can lose at a given risk level, but provides no indication for how much more

than VaR one can lose if extreme tail events happen. This may lead to an equivalent VaR

estimate for two di¤erent positions, though they have completely di¤erent risk exposures.

Artzner et al. (1999) proposed the concept of coherent risk measure, which has become the

paradigm of risk measurement. A good alternative is conditional Value-at-Risk (CVaR),

which is a coherent risk measure and retains the beneÖts of VaR in terms of the capability

to deÖne quantiles of the loss distribution.

Although the CVaR approach has been widely used for risk analysis, the implementa-

tion of backtesting for CVaR models is much harder than for VaR models. Nevertheless,
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formal backtesting methods can be found in literature, such as the most commonly used

approach zero-mean residual test by McNeil and Frey (2000) which relies on bootstrapping,

the censored Gaussian method by Berkowitz (2001) and the functional delta approach by

Kerkhol and Melenverg (2004).4 However, applying these methods tend to be di¢ cult and

overly complex. The application of these methods is based upon the realization of speciÖc

conditions, hence it is possible to backtest CVaR only under speciÖc circumstances. Kerk-

hol and Melenverg (2004) suggest a viable and simpler alternative to backtesting CVaR on

the basis of equal quantiles, after Önding a nominal risk level b� for CVaR.

We now focus on the models for which we have the most evidence of a substantial impact

of the introduction of leverage and jumps on the prediction accuracy of the model. In order

to classify the competing models, we follow a two-stage model evaluation procedure where

in the Örst stage models are selected in terms of their statistical accuracy (the backtesting

stage), while in the second stage the surviving models are evaluated in terms of their

ìe¢ ciencyî(the e¢ ciency stage).5

Stage 1: Backtesting the VaR and CVaR models

In order to backtest the accuracy of the estimated VaRs, it is necessary to calculate the

empirical failure rates for the estimates. The Failure Rate (FR) or violation rate, computes

the ratio of the number of times returns exceed the estimated VaRs over the total number

of observations. The model is said to be correctly speciÖed if the calculated ratio is equal

to the pre-speciÖed VaR level (i.e. � = 5% and � = 1%). If the Failure Rate is higher than

� , we can conclude that the model underestimates the risk, and vice versa.

The failure rate FRV aRs for the downside risk of a long trading position, is calculated

as the percentage of negative returns that are smaller than the left quantile VaRs, while the

failure rate FRV aRd for the upside risk of a short trading position is the ratio of positive

4 A comprehensive discussion of various CV aR backtesting methodologies as well as their implementa-
tions at di¤erent circumstances is provided by Wimmerstedt (2015).

5 For details see Sarma et al. (2003).
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returns larger than the right quantile VaRs. We deÖne FRV aRs and FRV aRd as follows:

FRV aRd =
1

T

TX
t=1

It (yt < �V aRd;t)

FRV aRu =
1

T

TX
t=1

It (yt > V aRu;t)

where V aRd;t and V aRu;t are the estimated V aRs for downside and upside risk at time

t for a given conÖdence interval, T is the number of observations and It(�) is the indicator

function which is deÖned as:

Downside : It =

�
1 if yt < �V aRd;t
0 if yt � V aRu;t

Upside : It =

�
1 if yt > V aRu;t
0 if yt � V aRd;t

There are three formal tests based on the above criteria to backtest the VaR estimates.

The unconditional coverage test (LRuc), proposed by Kupiec (1995), examines whether the

null hypothesis H0 : FR = � can be satisÖed. A good performance of the VaR model should

be accompanied by accurate unconditional coverage, that is, the failure rate is statistically

expected to be equal to the prescribed VaR level �.

The method proposed by Kupiec (1995) is capable to test the overestimates or un-

derestimates of a VaR model. It does not, however, consider whether the exceptions are

scattered or if they appear in clusters.6 In order to examine whether the VaR violations are

serially uncorrelated over time, Christo¤ersen (1998) proposes the independent likelihood

ratio test (LRind).

In addition, a more selective conditional coverage test (LRcc) which jointly examines the

unconditional coverage and independence of violations has been developed by Christo¤ersen

(1998). This test investigates if the failure rate is equal to the expected prescribed risk

level and if the exceptions are independently distributed over time. The null hypothesis
6 Kupiecís (1995) approach is an unconditional test. On the other hand, we need to conditionally examine



for this test is that the exceptions are independent and that the expected failure rate is



accuracy of the estimated VaRs and CVaRs, the three formal tests described in the previous

section are applied to the model forecasts using empirical failure rate criteria.

Because the LRcc test is the most rigorous among the three tests considered, we will

focus on the outcomes of this test. When all the models pass the LRcc test, they are also

compared on the basis of the Failure rate (FR): the model whose FR is the closest to � for

VaR or b�



nor the SVL model adequately forecast risk in a CVaR sense.

Table 16 presents a summary of the main conclusions that we can draw from the out-

of-sample VaR/CVaR backtesting results.

We classify the results of a test inconclusive when multiple models show the same results

in terms of the statistical signiÖcance and the failure rate. We declare that none of the

models is adequate in the cases where none of the models passes the LRcc test. Overall,

the introduction of both leverage and jumps (SVJL model) provides the best forecast for

risk in both a VaR and a CVaR sense for investors who have any position in natural gas

futures regardless of their degree of risk aversion. In the S&P500 market, the SVJL model

provides the most precise forecast of risk in a CVaR sense for risk-averse investors with

any position in futures, regardless of their degree of risk aversion.
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Stage 2: E¢ ciency measures.

Table 17 compares the best performing models within the VaR backtesting process using

the Regulatory loss function (RLF) and Firmís loss function (FLF) as ranking criteria.

Panel A presents the average loss values for the RLF and the FLF for the competing

models at various risk levels in the three markets. The models with the lowest average

loss values are underlined. Panel B reports the standardized sign statistics values. SAB

denotes the standardized sign statistics with null of ìnon-superiorityî of the SVL model

over the SVJL model while SBA represents the standardized sign statistics with null of

ìnon-superiorityî of the SVJL model over the SVL model. SCD denotes the standardized

sign statistics with null of ìnon-superiorityî of the SVL model over the SVJ model while

SDC represents the standardized sign statistics with null of ìnon-superiorityî of the SVJ

model over the SVL model. ì∗îdenotes signiÖcance at the corresponding level.

SVL vs SVJL

The results in Panel A show that the SVL model achieves a lower average loss than the

SVJL model under the RLF approach while the SVJL model scores a lower average loss

under the FLF approach. To address the statistical signiÖcance of the losses, we report

the values of the standardized sign test in Panel B. For the RLF criterion, the competing

models are not signiÖcantly di¤erent from each other. Under the FLF criterion, the SVJL

model is signiÖcantly better than the SVL model for Örms who are long S&P500 futures

and for Örms who are short natural gas futures at a 95% conÖdence level. The SVL

model outperforms the SVJL model only for Örms who are short S&P500 futures at a 95%

conÖdence level.

SVL vs SVJ

The results in Panel A indicate that, under the RLF criterion, the SVL model is more

likely to achieve lower average losses than the SVJ model for Önancial regulators who focus

on the risk a¤ecting long positions in futures, while the SVJ model has the potential to

achieve a smaller average loss compared to the SVL model for Önancial regulators who

focus on the risk a¤ecting short positions in futures. Considering the FLF approach, Örms
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who use the VaR criterion for tail risk management while minimizing the opportunity cost

of capital in the S&P500 and WTI crude oil futures markets should prefer the SVJ model

while Örms operating in the natural gas futures market would be better o¤ adopting the

SVL model.

In order to examine the statistical signiÖcance of the losses, we report the values of the

standardized sign test in Panel B. For the RLF criterion, the competing models are not

signiÖcantly di¤erent from each other. Under FLF criterion, the SVJ model is signiÖcantly

better than the SVL model for Örms who are long futures in the SP&500 and WTI markets

at both 95% and 99% conÖdence level. On the contrary, the SVL model is signiÖcantly



SVJL model is more likely to perform better than SVL only for Örms who are long S&P500

futures at a 1.96% nominal level while SVL scores better for Örms who are short S&P500

futures at a 1.96% nominal level.

SVL vs SVJ

There is no absolute advantage of one over the other under the RLF criterion. Under

the FLF criterion, the SVJ model performs better than the SVL model for Örms who hold

any positions in the SP&500 and the WTI futures markets. Similarly, the standardized sign

test values for the RLF criterion in Panel B indicate that there are no signiÖcant di¤erences

between the two models. Under the FLF criterion, the SVJ model is signiÖcantly better

than the SVL model for Örms who are long futures in the SP&500 and WTI markets at

both the 95% and 99% conÖdence levels. On the contrary, the SVL model is signiÖcantly
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aversion. Focusing on a Örmís internal risk management, the introduction of both jumps

and leverage in the SVJL model would beneÖt speculative Örms who are short natural gas

futures aiming at minimizing tail risk in a VaR sense, as well as speculative Örms who are

long S&P500 futures and use either VaR or CVaR as Önancial risk management criteria

while wanting to minimize the opportunity cost of capital.
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Appendix I: Realized Variance and Moment conditions

Following Bollerslev and Zhou (2002), who use continuously observed futures prices, we

build a conditional moment estimator for stochastic variance models based on matching

the sample moments of Realized Variance with population moments of the Integrated Vari-

ance. In this paper, realized variance is computed as the sum of high-frequency (10-minute

interval) intraday squared returns.

8.1 No jumps

The returns on futures at time t over the interval [t� k; t] can be decomposed as

r (t; k) = lnFt � lnFt−k =

Z t

t−k
� (�) d� +

Z t

t−k
� (�) dW�

When no jumps are considered, the Quadratic Variation coincides with Integrated Variance

from the population and it is deÖned as

QV (t; k) = IV (t; k) =

Z t

t−k
�2 (�) d�

The Realized Variance from the sample is deÖned as:

RV (t; k; n) =

n·kX
j=1

r

�
t� k +

j

n
;

1

n

�2

RV (t; k; n)
p
−→ IV (t; k)

as n �!1





I =
1



8.2 Jumps

When we allow for discrete jumps, the returns on futures at time t over the interval [t� k; t]

can be decomposed as

r (t; k) = lnFt � lnFt−k

=

Z t

t−k
� (�) d� +

Z t

t−k
� (�) dW� +

Z t

t−k
x (�) dN (��)

In this case, Integrated Variance and Quadratic Variation do not coincide:

IVjumps (t; k) =

Z t

t−k
�2 (�) d� +

X
t−k≤s≤t

(x (s) dN (�s))2

= QV (t; k) +
X

t−k≤s≤t
(x (s) dN (�s))2

Barndor¤-Nielsen and Shephard (2004) proposed the Realized Bipower Variation as a

consistent estimate of integrated variance component in the presence of jumps:

BV (t; k;n) = �
2

Pn·k
i=2

��can be decomposed as



e1J = E [BPt;t+1j Gt] + ��2
xdt�RVt;t+1

since

E [RVt;t+1j Gt] = E [BPt;t+1j Gt] + ��2
xdt

combining with equation (A:3) on page 56, Appendix A.1

Residual 2

At time (t+ 1; t+ 2)

e2J = E [RVt+1





E
�
V 2
t;t+1

��Gt� can be observed from the realized variance

V 2
t+1;t+2 is the realized variance in the next period]TJ/F231 14]TJ/.2[w8.556 10.473 Td [(�)]TJ/F47 10.9091 Tf 2[w8.556 1t



Appendix II: Figures

Figure 1

0

.1.2.3Daily RV SP50001jan200201jul200501jan200901jul201201jan2016Quote dateDaily Realised Variance, SP500 fut, 20012016
Figure 2
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Figure 3

Figure 4
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Figure 5

Figure 6
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Appendix III: t and J tests on the moment conditions
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